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This paper analyzes theoretically the signal propagation in spin transport by modulating the current passing
through magnetic multilayers. Using a macroscopic description of spin transport based on the dynamical
Boltzmann equation, we show that time-dependent spin transport possesses a wavelike character that leads to
modifications of pure spin-diffusion dynamics. In particular, the wavelike characteristics allow one to extract a
finite spin signal-propagation velocity.
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I. INTRODUCTION

Time-dependent spin transport in magnetic multilayers
with current perpendicular to the plane �CPP� is studied be-
cause of its significance in physics and promising applica-
tions in spintronics devices.1,2 Most theoretical investigations
are based on a diffusion equation for the spin accumulation
or magnetization.3–6 These theories show that if one drives a
spin-polarized current through an interface from a magnetic
to a nonmagnetic metallic layer, the spin propagates by “dif-
fusing” into the nonmagnetic layers. If one considers time-
dependent spin transport, such as spin transfer torque
switching,3,5 alternating current �AC�,4 or magnetization
switching,6 where a time-dependent signal is encoded in the
spin orientation, one faces a difficulty of the diffusion equa-
tion in that no propagation velocity for the spin signal in the
nonmagnetic layer can be defined. Stated differently, the dif-
fusion equation yields an infinite propagation velocity for the
spin signal in the nonmagnetic layer because the signal will
appear everywhere as soon as the source is switched on.3 In
this paper, we show how a physical propagation velocity for
spin signals in the CPP configuration can be determined by
deriving and analyzing macroscopic dynamical equations for
spin transport.

It is an interesting connection that a problem analogous to
that of an infinite signal-propagation velocity in the spin-
diffusion equation exists for the heat diffusion equation,
which yields an infinite heat-conduction velocity. This diffi-
culty was resolved by recognizing that the theoretical de-
scription of heat transport needs to be generalized by substi-
tuting the Maxwell-Cattaneo equation7,8 for Fourier’s law. In
this way, one obtains the physical picture that heat conduc-
tion is characterized by a wave-diffusion duality. Formally,
the heat diffusion equation needs to be replaced by an equa-
tion that is essentially a telegraph equation.9,10 As we show
in this paper, a similar modification of the spin-diffusion
equation is necessary in the case of spin transport.

We base our derivation of the macroscopic equations for
spin transport through multilayers on the theory developed
for steady-state spin transport across magnetic multilayers by
Valet and Fert.11 Instead of using the time-independent
Boltzmann equation as in Ref. 11, we treat time-dependent
spin transport starting from the dynamical Boltzmann equa-
tion, which allows us to derive macroscopic equations and to
generalize the spin-diffusion equation.

This paper is organized as follows. The macroscopic dy-
namical equations are derived in Sec. II of our paper. Since
the central equations �Eqs. �18� and �19�� can also be cast in
a form that resembles telegraph equations, we discuss quali-
tative aspects of dynamical spin transport in Sec. III using
these telegraph equations. In Sec. IV, we analyze two con-
crete examples of time-dependent spin transport numerically,
and the main conclusions are summarized in Sec. V.

II. TIME-DEPENDENT EQUATION SYSTEM

In this section, the model of Valet and Fert11 for spin-
dependent transport of conduction electrons through metallic
multilayers will be extended to take into account the time
dependence of spin transport. The electron distribution func-
tion fs�z ,v , t� satisfies the linearized Boltzmann equation,

� fs�z,v,t�
�t

+ vz
� fs�z,v,t�

�z
− eE�z,t�vz

� f0�v�
��

=� d3v�����v�� − ��v��Ps�z,��v��

��fs�z,v�,t� − fs�z,v,t��

+� d3v�����v�� − ��v��Psf�z,��v��

��f−s�z,v�,t� − fs�z,v,t�� , �1�

where −e and ��v�=mv2 /2 denote, respectively, the charge
and kinetic energy of the electrons and E�z , t�=−�V�z , t� /�z
is the local electric field.12 Ps�z ,�� and Psf�z ,�� are the spin
conserving and spin-flip transition probabilities, respectively.
Following Ref. 11, we assume fs�z ,v , t� to be the sum of the
Fermi-Dirac distribution f0�v� and small perturbations,

fs�z,v,t� = f0�v� +
� f0

��
���0 − �s�z,t�� + gs�z,v,t�� , �2�

where �0=mvF
2 /2 and �s�z , t� are the equilibrium and non-

equilibrium chemical potentials, respectively. Due to the cy-
lindrical symmetry of the system around the z axis, gs�z ,v , t�
can be expanded in Legendre polynomials of cos �, where �
is the angle between v and the z axis, as
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gs�z,v,t� = �
n=1

�

gs
�n��z,t�Pn�cos �� . �3�

Here, the zero-order �isotropic� term is absent because
��f0 /���gs�z ,v , t� was defined by Eq. �2� as the anisotropic
part of the electron distribution perturbation. Using Eq. �3�,
we obtain

�gs�z,v,t�
�t

+ vz
�gs�z,v,t�

�z
+ 	 1

�s
+

1

�sf

gs�z,v,t�

=
��s�z,t�

�t
+ vz

��̄s�z,t�
�z

+
�̄s�z,t� − �̄−s�z,t�

�sf
, �4�

where �̄s�z , t�=�s�z , t�−eV�z , t� is the electrochemical po-
tential for electrons with spin s. The derivation of this equa-
tion is detailed in Appendix A2. Note that v in Eq. �4� has
been restricted to the Fermi velocity vF, i.e., �v�=vF and vz
=vF cos �.

With the relaxation times �s and �sf �see Eqs. �A9� and
�A10� in Appendix A2�, the local electron mean-free path 	s,
diffusion constant Ds, and spin-diffusion length ls can be
defined, respectively, as 	s=vF�s�, Ds=vF	s /3, and ls
= �Ds�sf�1/2, where the momentum relaxation time �s� is de-
fined by

1/�s� = 1/�s + 1/�sf. �5�

The appropriate “average” spin-diffusion length lsf can be
defined as �1 / lsf�2= �1 / l+�2+ �1 / l−�2. Throughout the paper,
subscripts + and − stand for the absolute spin directions “up”
and “down,” respectively, whereas subscripts ↑ and ↓ stand
for the majority- and minority-spin directions, respectively.

Using the method of Appendix B in Ref. 11, we express
the time-dependent current density for spin s as

Js�z,t� = −
e

V
�

v
fs�z,v,t�vz = 
gs

�1��z,t� , �6�

where 
=�s / �e	s�. Note that 
 is independent of s and of the
material in the Valet-Fert model. The conductivity �s can be
written as �s=e2ns�s� /m, where ns=4��mvF /h�3 /3 is the
number of electrons with spin s. It is easy to see that �s
satisfies Einstein’s relation �s=e2NsDs, where

Ns =
1

4�2 �2m/2�3/2��0 �7�

is the density of states for spin s at the Fermi level �0, and
N+=N−.

Substituting Eqs. �3� and �6� into Eq. �4�, we obtain

e

�s

�Js�z,t�
�z

−
1

Ds

��s�z,t�
�t

=
�̄s�z,t� − �̄−s�z,t�

ls
2 , �8�

Js�z,t� =
�s

e

��̄s�z,t�
�z

− �s�
�Js�z,t�

�t
. �9�

In steady state, Js�z , t� and �̄s�z , t� become time independent
and then Eqs. �8� and �9� reduce to Eqs. �10� and �11� of Ref.
11, respectively.

Equations �8� and �9� will be transformed to more directly
usable forms next. Without loss of generality, the magnetiza-
tion of the ferromagnet is set to be up. Then, the majority
�minority� spins, which are antiparallel �parallel� to the local
magnetization �electron magnetic moment is �=−�e /m�s�
and denoted by subscript ↑ �↓�, point to the absolute spin
direction down �up� denoted by subscript − �+�. In terms of
Jm�z , t�=J+�z , t�−J−�z , t� and �m�z , t�=�+�z , t�−�−�z , t�, Eqs.
�8� and �9� can be written as

�Jm�z,t�
�z

− eNs
��m�z,t�

�t
= eNs

�m�z,t�
T1

, �10�

Jm�z,t� = eNsD̄
��m�z,t�

�z
− �

�Jm�z,t�
�t

− �̃J�z,t� , �11�

where

T1 = �sf/2 �12�

can be regarded as the spin-relaxation time.13 The average

diffusion constant D̄ is defined as D̄=c2�, with the wave-
front velocity c defined by

c2 = vF
2 /3. �13�

The average momentum relaxation time � is

1/� = �1/�+� + 1/�−��/2, �14�

and we have the identity lsf=c��T1. In Eq. �11�, �̃= ��−�
−�+�� / ��−�+�+�� equals � and 0 for the ferromagnetic and non-
magnetic layers, respectively. The bulk spin asymmetry co-
efficient � in the ferromagnetic layer is defined by
�↑�↓�=1 /�↑�↓�=2�F

��1− �+���, where �F
� is the total resistivity

of the ferromagnetic layer. In the nonmagnetic layer, we have
�↑�↓�=2�N

� , where �N
� is the total resistivity of the nonmag-

netic layer.
In Eq. �11�, J�z , t� stands for the total current density,

J�z , t�=J+�z , t�+J−�z , t�. By introducing ��z , t�= ��+�z , t�
+�−�z , t�� /2, we can also derive equations for the charge
dynamics,

�J�z,t�
�z

− 2eNs
���z,t�

�t
= 0, �15�

J�z,t� = 2eNsD̄
�

�z
���z,t� − eV�z,t�� − �

�J�z,t�
�t

− �̃Jm�z,t� .

�16�

To describe spin accumulation by spin density instead of the
chemical potential, it is necessary to transform Eqs. �10� and
�11� using the following identity �Eq. �A15��:

nm�z,t� = − eNs�m�z,t� , �17�

where nm�z , t�=n+�z , t�−n−�z , t� is the spin density and
ns�z , t� the nonequilibrium charge density for spin s. Using
Eq. �17�, we can rewrite Eqs. �10� and �11� as

�Jm�z,t�
�z

+
�nm�z,t�

�t
= −

nm�z,t�
T1

, �18�
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Jm�z,t� = − D̄
�nm�z,t�

�z
− �

�Jm�z,t�
�t

− �̃J�z,t� . �19�

To proceed further, we need the following identity �Eq.
�A16��:

n�z,t� − 2ns
0 = − eNs�2��z,t� − 2�0� , �20�

where n�z , t�=n+�z , t�+n−�z , t� is total nonequilibrium charge
density and ns

0 the equilibrium charge density for spin s.
Using Eq. �20�, we can rewrite Eqs. �15� and �16� as

�J�z,t�
�z

+
�n�z,t�

�t
= 0, �21�

J�z,t� = − D̄
�n�z,t�

�z
− 2e2NsD̄

�V�z,t�
�z

− �
�J�z,t�

�t
− �̃Jm�z,t� .

�22�

In general, Eqs. �18� and �19� should be solved together
with Eqs. �21� and �22�, and Poisson’s equation. However, in
metals and degenerate semiconductors, the accumulation of
charge occurs on a much smaller length scale and varies
much faster than that of spin.3–6 Thus as an approximation, it
is assumed that the charge accumulation described by n�z , t�
can always reach its steady state instantaneously when spin
transport is considered. This means that we always set
�n�z , t� /�t=0, which leads to �J�z , t� /�z=0 according to Eq.
�21�. Therefore, the current density J�z , t� in Eqs. �11� and
�19� becomes independent of z and can be written as J�t�
instead.

III. “TELEGRAPH” EQUATION

In order to see the physical significance of the dynamics
described by Eqs. �18� and �19� and to compare it with the
spin-diffusion equation used in Refs. 3–6 we combine Eqs.
�18� and �19� to yield the following equations:

�2nm�z,t�
�t2 + 	1

�
+

1

T1

 �nm�z,t�

�t
+

nm�z,t�
�T1

= c2�2nm�z,t�
�z2 ,

�23�

�2Jm�z,t�
�t2 + 	1

�
+

1

T1

 �Jm�z,t�

�t
+

Jm�z,t�
�T1

= c2�2Jm�z,t�
�z2 − �̃1

�

�J�t�
�t

+
J�t�
�T1

� . �24�

Because of the formal similarity of each of Eqs. �23� and
�24� with the telegraph equation, we will refer to them as
telegraph equations in the following.

Each of the telegraph equations contains a second-order
time derivative, which is absent in the spin-diffusion equa-
tion. This term originates from the time derivative of the spin
current in Eq. �19�, which is also absent in the corresponding
equation for the spin current in spin-diffusion theory �see, for
instance, Eq. �8� of Ref. 3�. This additional term shows that it
takes a finite time for the spin current to adjust to the gradi-

ent of the spin accumulation.9,14 The second-order time and
space derivatives lead to a wave character of dynamical spin
transport in addition to its diffusion character described by
the first-order time and second-order space derivatives. Thus,
these equations show that time-dependent spin transport
should be understood using a wave-diffusion duality picture.
The occurrence of spin accumulation waves enables one to
determine a well-defined propagation velocity c for the sig-
nal in time-dependent spin transport. Although the spin-
diffusion equation does not yield spin accumulation waves
and thus a finite signal-propagation velocity, it can be re-
garded as an approximation of the wave-diffusion duality of
the time-dependent spin transport in the long-time limit.

In the following, the telegraph equation of the nonmag-
netic layer will be analyzed in detail. Here, we have �=�s�

and �̃=0. Thus, Eqs. �23� and �24� have the same structure
and we discuss only Eq. �23� without loss of generality. We
seek a damped and dispersive wave solution to Eq. �23� of
the form

nm�z,t� = nm
0 exp�i�kz − �t�� . �25�

At this stage, we can set either �=�r+ i�i or k=kr+ iki. The
complex � and k will yield damping factors in time and
space, respectively. Since we are more interested in the
damping length �or the dynamical spin-diffusion length�, we
will follow the method of Ref. 15 and assume k=kr+ iki.
Substituting Eq. �25� into Eq. �23�, we get the dispersion
relation,

− �2 − i�� + � = − c2k2, �26�

where �=1 /�s�+1 /T1 and �=1 / ��s�T1�. Separating the real
and imaginary parts of Eq. �26�, we obtain

kr,i
2 =

1

2c2 ����2 − ��2 + �2�2 � ��2 − ��� . �27�

The wavelength, defined as 2� / �kr�, can be written as

	

	s,z
= 2��2����̃2 − ��2 + �� + 1�2�̃2 + ��̃2 − ���−1/2,

�28�

where 	s,z=c�s� is the z component of the electron mean-free
path. Moreover, we have introduced dimensionless quanti-
ties,

�̃ = ��s�, � = �s�/T1. �29�

The damping length, defined as ld=1 / �ki�, can be written
as

ld

	s,z
= �2����̃2 − ��2 + �� + 1�2�̃2 − ��̃2 − ���−1/2. �30�

Note that ld can also be regarded as the dynamical spin-
diffusion length. When �̃→0 or �, the damping length ld

will approach lsf or 2lsf
��s�T1 / ��s�+T1�, respectively.

Figure 1 shows the variation of ld /	s,z and 	 /	s,z with ��s�
for three different values of �. Note that the curves of 	 /	s,z
for different � are very close to each other in the frequency
range shown in the figure. The damping length ld decreases
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with frequency, which is analogous to the skin effect of the
electromagnetic wave propagating in metal. The intersection
of ld /	s,z and 	 /	s,z indicates the critical angular frequency
�c, which separates the wavelike region from the diffusion
dominated regime, because the wave character becomes sig-
nificant only if the damping length exceeds the wavelength.
Stated differently, the wave character is significant if the
typical time scale �sig of the time-dependent process is
smaller than the critical period Tc=2� /�c. On the contrary,
the diffusion character is dominant if �sig�Tc, and the spin-
diffusion picture becomes a good approximation of the
wave-diffusion duality in the limit �sig�Tc.

An explicit expression for the critical angular frequency
�c is obtained by combining 	= ld with Eq. �27�

�c�s� =
1

2
���1 + �� + ��2�1 + ��2 + 4�� � � + 	� +

1

�

� ,

�31�

where �=�−1 / �4���3.06. Then, we have �c�s�=3.06
+3.4� approximately.

The phase velocity, defined as vp=� / �kr�, of the spin ac-
cumulation wave can be written as

vp

c
=

�2

� + 1
����̃2 − ��2 + �� + 1�2�̃2 − ��̃2 − ���1/2.

�32�

When �̃→0 or �, the phase velocity vp approaches
2c / ��1/2+�−1/2� or c, respectively. When �=1, the phase ve-
locity becomes equal to c for all frequencies. Furthermore,
the group velocity can be defined as vg=d� /dkr and calcu-
lated from Eq. �26�.

Figure 2 shows the phase velocity vp as functions of �̃ for
�=0.1, 0.02, and 0.01. The phase velocity is approximately
equal to the wave-front velocity c when the wave character is
significant ����c�. In this case, the phase velocity provides
a good description of the wavelike dynamics. On the con-
trary, when the wave character is insignificant ����c�, the
wave amplitude is damped strongly and the phase velocity is

not meaningful anymore. In this region, the propagation ve-
locity is the wave-front velocity c, albeit only on the length
scale of a damping length.

In the special case where �=1 ��s�=T1�, we have �kr�
=� /c and �ki�=1 / lsf. This means that the spin accumulation
wave becomes a nondispersive but dissipative wave with the
constant phase �and group� velocity c and penetration depth
lsf. However, this case is likely not realized because T1 is
usually much larger than �s� and Valet-Fert theory is justified
to be valid only when ��s� /2T1�1/2�1.

IV. NUMERICAL RESULTS

In this section, the general analysis of the telegraph equa-
tions for spin transport is augmented by numerical solutions
for two illustrative examples of signal propagation using
spin-polarized currents through a ferromagnet/metal junc-
tion: �i� injection of an alternating current and �ii� instanta-
neous magnetization switching. The results are obtained by
numerically solving the system of Eqs. �10� and �11�. Our
numerical method is outlined in Appendix A4. These equa-
tions are equivalent to the telegraph equations �Eqs. �23� and
�24��, which have been discussed in Sec. III, but are easier to
solve. Alternatively, we could solve the equation system con-
sisting of Eqs. �18� and �19�, in which the spin accumulation
is described by the spin density. However, it is more conve-
nient to work with the electrochemical potential than the spin
density when we deal with the boundary conditions.19

We choose a ferromagnet/metal junction consisting of Co
and Cu as the material system in both of the scenarios. The
interface of the junction is placed at z=0 and the Co �Cu�
occupies the half-space z�0 �z�0�. The positive direction
of the current is parallel to the positive direction of the z axis.
For simplicity, the interface resistance of the junction will be
neglected. Then, the electrochemical potential and the cur-
rent density are continuous across the interface. Conse-
quently, the spin transport across two layers can be described
by one common equation system with different material pa-
rameters for the two layers.
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FIG. 1. Variation of ld /	s,z and 	 /	s,z with ��s� for three differ-
ent values of �. The short-dashed, solid, and long-dashed curves
correspond to �=0.1, 0.02, and 0.01, respectively.
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The material parameters used in our numerical calculation
are shown in Table I. All other parameters can be obtained
from the values in Table I. In particular, the wave-front ve-
locity is calculated to be c=910 nm /ps from Eq. �13�. In the
nonmagnetic layer, �=�s� /T1=0.02. The wavelength 	 and
damping length ld are shown as the solid curves in Fig. 1.
The critical period Tc can be estimated to be 2�s��0.14 ps
from Eq. �31�, and the phase velocity is plotted in Fig. 2.

A. AC injection

The alternating charge current density passing through the
ferromagnet/metal junction is assumed to be of the form
J�t�=J0 sin��t�, where J0=100 nA /nm2. Note that the z de-
pendence of the charge current J�z , t� in Eq. �11� is neglected
for the investigation of the spin transport as pointed out in
Sec. II. Two typical frequencies are studied in the case of the
AC drive, �a=�a / �2��=8.33 THz and �b=�b / �2��
=0.23 THz, which are larger and smaller than the critical
frequency �c=�c / �2��=7.11 THz, of Cu, respectively. The
corresponding periods of the two frequencies are Ta
=0.12 ps and Tb=4.4 ps, which satisfy Ta�Tc�Tb. The
numerical results for the two frequencies are discussed in the
following.

High-frequency case ��=�a��c�. Figure 3 shows snap-
shots of the spin-current density Jm�z , t� at times t=1.75Ta
and t=5.75Ta. At both times, the charge current density J�t�
reaches its minimum J�t�=−J0. The wave front, i.e., the spin
signal, can be seen clearly in Fig. 3�a�, where the time t is so
small that the wave front has not propagated beyond the
scale of the damping length ld. In Fig. 3�b�, the signal has
propagated further, and due to the attenuation of the wave,
the wave front is less clearly visible. Nevertheless, the wave-
front velocity c can be determined numerically �or experi-
mentally� by tracking the motion of the wave front over a
short-time interval after switching on the drive current. Since
we are using a signal time scale shorter than the critical time,
we expect from the analysis in Sec. III �see also Fig. 2� the
phase velocity to be vp�c=910 nm /ps from Eq. �13� and a
wavelength 	=108 nm. These expectations are borne out by
the numerical results. The dynamical damping length ld can
also be extracted from the numerical data, or from an experi-
ment, by fitting a decay time to the envelope of the spin-
current signal for longer times. Due to inaccuracies of the

fitting procedure, this quantity is more difficult to determine
quantitatively but agrees well with the damping length ld
=126 nm expected from Eq. �30�. An important qualitative
conclusion can be drawn by comparing the decay of the dy-
namical spin signal in Fig. 3�b� with the spin-current density
Jm�z� that results from a constant current density J=−J0,
which is also shown. Since our dynamical equations and the
spin-diffusion equation have the same long-time limit, the
DC result is identical with steady-state spin diffusion. It is
apparent that the damping length ld becomes much shorter
than the spin-diffusion length lsf of the steady-state spin
transport with DC bias. This is the “skin” effect, which is
already present in the analytical results in Sec. III.

Figure 4 shows the z-dependent spin accumulation �m for
the same parameters as in Fig. 3�b�. The wavelength, damp-
ing length, and phase velocity given by Fig. 4 are very simi-
lar to those in Fig. 3�b�. Note, however, that the amplitude of
the dynamical spin accumulation is much smaller than the
spin accumulation of the steady-state spin transport shown
by the dashed curve. The reason is that the AC drive oscil-
lates too fast so that the spin accumulation does not have
enough time to reach its steady-state value.

TABLE I. Parameters for Cu and Co used in numerical calcula-
tion. The units of vF, �N�F�

� , and lsf
N�F� are nm/ps, � nm, and nm,

respectively. � and T1 are given in ps.

Material vF �N�F�
� lsf

N�F�
�̃ � T1

Cu 1570a 6b 450b 0 0.07e 3.5e

Co 1570a 86c 60d 0.5c 0.005e 0.9e

aFrom Ref. 16; Cu and Co are assumed to have a common Fermi
velocity in the Valet-Fert model.
bFrom Ref. 17.
cFrom Ref. 11.
dFrom Ref. 18.
eCalculated from Eqs. �12� and �14�. -20
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Low-frequency case ��=�b��c�. Before analyzing the
signal-propagation velocity, we first show how the results
change qualitatively compared to the high-frequency case. In
Fig. 5, the spin current Jm is plotted as a function of z driven
by an AC with frequency �b, which is smaller than the criti-
cal frequency �c. The period Tb of the AC drive is 4.4 ps,
which is much larger than Ta in Fig. 3. The solid curve is
Jm�z , t� at t=1.75Tb �charge current J=−J0� with AC drive.
The dashed curve is again Jm�z� driven by a constant current
density J=−J0. For this driving frequency, the wave charac-
ter is insignificant because the wavelength 	=1856 nm be-
comes much larger than the damping length ld=268 nm, and
thus the wave amplitude is damped to zero within just one
wavelength. From a practical point of view, the wavelength
and the phase velocity vp=0.47c lose their meaning in this
case. Comparison between the solid and dashed curves
shows that the damping length for Tb becomes longer than
that for Ta in Fig. 3, which is a consequence of the skin
effect.

Figure 6 shows the spin accumulation �m as a function of
z. The parameters used are the same as those in Fig. 5. The
features of the spin accumulation are again reminiscent of
the spin current in Fig. 5. Note that the spin accumulation
has become larger compared to the AC drive with period Ta
in Fig. 4. This is reasonable because the AC drive oscillates
more slowly than that in Fig. 4, so that the spin accumulation

has more time to approach its steady-state value.
At the time the snapshots in Figs. 5 and 6 are taken, no

“wave front” of the spin current, or signal, can be distin-
guished. To determine the propagation velocity, we show
Jm�z , t� and �m�z , t� at t=Tb /16, Tb /8, and Tb /4 in Figs. 7
and 8, respectively. By tracking the motion of the wave front
with time, we can estimate the propagation velocity of the
signal. The result is in agreement with the wave-front veloc-
ity c, which according to our analysis of the telegraph equa-
tion �Eq. �23�� is still the propagation velocity.

Time-dependent spin transport in the low-frequency case
can be described approximately by the conventional spin-
diffusion equation. However, it is impossible to estimate the
signal-propagation velocity from conventional spin-diffusion
theory because there is no wave front in that case and the
signal appears in infinity once the charge current J�t� is
switched on.3,20

B. Magnetization switching

The instantaneous switching of the magnetization in the
ferromagnet, through which the current passes into the non-
magnetic metal, provides perhaps the conceptually cleanest
picture of a spin-switching process. For a numerical study of
this process, we consider again a ferromagnet/metal junction
consisting of Co and Cu. We assume that the system is in a
steady state in the presence of the dc drive with a charge
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FIG. 5. Spin-current density Jm�z , t� as a function of z. The solid
curve is Jm�z , t� at t=1.75Tb �charge current J�t�=−J0� with AC
drive. The dashed curve is the spin-current density Jm�z� for the
case of a dc density J=−J0.
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current density J0=100 nA /nm2 before the magnetization of
the ferromagnetic layer is switched from up to down at t
=0. We model the switching as an idealized instantaneous
process and only consider the evolution of the spin-current
density and spin accumulation afterwards. The spin-up elec-
trons become the majority and the spin-down electrons be-
come the minority after the instantaneous switching. The
conductivities of the majority and minority channels are also
exchanged by the switching. Although the evolution of
Jm�z , t� and �m�z , t� does not take the wave form used in Sec.
III, it can be decomposed into different frequencies by Fou-
rier transformation, so that the analysis of the telegraph equa-
tion still applies.

Figures 9 and 10 show the dynamics of the spin current
and spin accumulation. Starting from the steady-state value
shown in part �a�, the magnetization is switched instanta-
neously at t=0. Figures 9�b� and 10�b� show snapshots 0.5 ps
after the switch when a pronounced kink has developed. This
kink indicates the leftmost position to which the

magnetization-switching signal has propagated after 0.5 ps.
The kink is noticeable only if the time t is so small that it
does not propagate beyond the length scale of the spin-
diffusion length lsf, over which the steady-state signal de-
cays. Thus the signal-propagation velocity can be estimated
roughly by tracking the motion of the kink with time at the
early stage of the switching. The result is very close to the
wave-front velocity c=910 nm /ps calculated from the ana-
lytical result �Eq. �13��. Moreover, Fig. 9�c� shows that the
spin-current density reaches the steady state with down mag-
netization on the time scale of the spin-relaxation time T1.
Since T1��s�, we can consider t=T1 as the long-time limit.
This behavior is consistent with the result calculated from
the diffusion equation in Ref. 3, so that again the diffusion
character of spin transport emerges as an approximation of
the wave-diffusion character in the long-time limit.

V. SUMMARY

We studied signal propagation in time-dependent spin
transport through magnetic multilayers using an extension of
the Valet-Fert theory to time-dependent phenomena. We es-
tablished that time-dependent spin transport has a wave char-
acter in addition to its diffusive character, which enabled us
to determine the finite propagation velocity of signals in spin
transport, such as ac spin injection and magnetization switch-
ing. The propagation velocity is the wave-front velocity c
=vF /�3. The wave character is significant if the signal time
scale �sig is smaller than a critical time Tc. When the wave
character is significant ��sig�Tc�, the time-dependent spin
transport should be modeled by the dynamical equations in-
troduced in this paper or, equivalently, the telegraph equa-
tions. However, pure diffusive spin transport can be regarded
as an approximation of the wave-diffusion duality for slow
switching times ��sig�Tc�. In this limit, the spin-diffusion
equation can be used to study the time dependence of spin
transport approximately, but it incorrectly yields an infinite
signal-propagation velocity.

ACKNOWLEDGMENTS

We acknowledge financial support from the state of
Rheinland-Pfalz through the MATCOR program and a CPU-
time grant from the John von Neumann Institut for Comput-
ing �NIC� at the Forschungszentrum Jülich.

APPENDIX: IDENTITIES AND DERIVATIONS

1. Useful identities

Several useful identities will be established by the help of
Eq. �3�. Multiplying sin � and integrating over � from 0 to �
on both sides of Eq. �3�, we have

�
0

�

d� sin �gs�z,v,t� = �
n=1

�

gs
�n��z,t��

0

�

d� sin �Pn�cos �� .

�A1�
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FIG. 9. Spin-current density Jm�z , t� as a function of z. The solid
curves in �a�–�c� are Jm�z , t� at t=0,0.5,3.5 ps, respectively. The
dashed curves in �b� and �c� are Jm�z , t� at t=0 ps plotted again as
a reference.
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The right-hand side �RHS� of Eq. �A1� can be further written
as

RHS = �
n=1

�

gs
�n��z,t��

−1

1

duP0�u�Pn�u� . �A2�

Using the orthogonality relation between Legendre polyno-
mials,

�
−1

1

duPn��u�Pn�u� =
2

2n + 1
�n,n�, �A3�

where �n,n� is the usual Kronecker symbol, we obtain from
Eqs. �A1� and �A2�

�
0

�

d� sin �gs�z,v,t� = 0. �A4�

Equation �A4� further leads to

�
v

gs�z,v,t� =
Vm3

h3 � d3vgs�z,v,t�

=
Vm3

h3 �
0

2�

d��
0

�

d� sin ��
0

�

dvv2gs�z,v,t� = 0.

�A5�

2. Derivation of Eq. (4)

Following Ref. 11, we substitute Eq. �2� into Eq. �1� and
use the following identity,

� f0

��
=

1

mv

� f0

�v
=

− ��v − vF�
mvF

. �A6�

Then we can write the RHS �the collision terms� of Eq. �1� as

� fs�z,v,t�
�t

�collision = −
� f0�v�

��
Ps�z,��v��

4�v
m gs�z,v,t� −

1

2
�

0

�

d�� sin ��gs�z,v�,t��v�=v�
−

� f0�v�
��

Psf�z,��v��
4�v
m gs�z,v,t� −

1

2
�

0

�

d�� sin ��g−s�z,v�,t��v�=v�
+

� f0�v�
��

Psf�z,��v��
4�v
m

��s�z,t� − �−s�z,t�� . �A7�

Using Eq. �A4�, we can write Eq. �A7� in the form

� fs�z,v,t�
�t

�collision = −
� f0�v�

��
Ps�z,��v��

4�v
m

gs�z,v,t�

−
� f0�v�

��
Psf�z,��v��

4�v
m

gs�z,v,t�

+
� f0�v�

��
Psf�z,��v��

4�v
m

��s�z,t�

− �−s�z,t�� . �A8�

By introducing the relaxation times,

1

�s�v�
= Ps�z,��v��

4�v
m

, �A9�

1

�sf�v�
= Psf�z,��v��

4�v
m

, �A10�

where the z dependence of the relaxation times is neglected
within the same layer, we can further write Eq. �A8� as

� fs�z,v,t�
�t

�collision = −
� f0�v�

��
	 1

�s
+

1

�sf

gs�z,v,t�

+
� f0�v�

��

�s�z,t� − �−s�z,t�
�sf

. �A11�

Taking into account the left-hand side of Eq. �1� and inte-
grating over v, we can finally derive Eq. �4�. Note that �s�v�
and �sf�v� are restricted to the Fermi velocity vF after the
integration over v and then they are simply written as �s and
�sf.

3. Derivation of Eqs. (17) and (20)

Multiplying by −e /V both sides of Eq. �2�, summing over
v, and using Eq. �A5�, we obtain

ns�z,t� − ns
0 = − eNs��s�z,t� − �0� , �A12�

where

ns�z,t� = −
e

V
�

v
fs�z,v,t� , �A13�

ZHU, HILLEBRANDS, AND SCHNEIDER PHYSICAL REVIEW B 78, 054429 �2008�

054429-8



ns
0 = −

e

V
�

v
f0�v� = − ens �A14�

are the nonequilibrium and equilibrium charge densities for
spin s, respectively. In turn, Eq. �A12� yields

nm�z,t� = − eNs�m�z,t� , �A15�

n�z,t� − 2ns
0 = − eNs�2��z,t� − 2�0� , �A16�

where nm�z , t�=n+�z , t�−n−�z , t� is the spin density and
n�z , t�=n+�z , t�+n−�z , t� the total nonequilibrium charge den-
sity.

4. Numerical solution of Eqs. (10) and (11)

For the numerical solution of Eqs. �10� and �11� we use
the method of characteristics and Hartree’s computational
form. Following Ref. 21, the space z and time t are dis-
cretized into grids with equal intervals �z and �t, respec-
tively. The discretized forms of Jm�z , t� and �m�z , t� are Jm,i

n

and �m,i
n at ith space point and nth time point, respectively.

Then, Jm,i
n+1 and �m,i

n+1 at �n+1�th time point can be calculated
by the iteration relations,

	2 +
�t

T1

�m,i

n+1 = 	1 −
�t

2T1

��m,i−1

n + �m,i+1
n � −

1

eNsc
	1 −

�t

2�



��Jm,i−1
n − Jm,i+1

n � , �A17�

	2 +
�t

�

Jm,i

n+1 = − eNsc	1 −
�t

2T1

��m,i−1

n − �m,i+1
n � + 	1 −

�t

2�



��Jm,i−1
n + Jm,i+1

n � −
�t

�
�̃�Jn + Jn+1� , �A18�

for all space points except the two boundary points, which
should be determined by boundary conditions. Here, Jn is the
total current density at nth time point. Moreover, �z and �t
are chosen to satisfy the relation �z=c�t. Equations �A17�
and �A18� can be iterated numerically to yield the results

presented in Sec. IV. In the numerical solution, we used the
following initial and boundary conditions for the AC spin
injection and magnetization switching.

AC spin injection. The initial conditions are �m�z , t=0�
=0 and Jm�z , t=0�=0. The boundary condition for �m�z , t� is
�m�z= �� , t�=0. From Eq. �11�, the boundary condition

Jm�z = � �,t� =
�̃J0

1 + �2�2 ��� cos��t� − sin��t�

− �� exp�− t/��� �A19�

for Jm�z , t� can be derived.
Magnetization switching. The initial conditions for

Jm�z , t� and �m�z , t� are the steady-state solutions to Eqs. �10�
and �11�,

�m
F�z,t = 0� = C0 exp�− z/lsf

F� , �A20�

Jm
F�z,t = 0� = −

C0

2e�F
� lsf

F exp�− z/lsf
F� − �̃J0, �A21�

�m
N�z,t = 0� = C0 exp�z/lsf

N� , �A22�

Jm
N�z,t = 0� =

C0

2e�N
� lsf

N exp�z/lsf
N� , �A23�

where C0=−2e�̃J0��F
� lsf

F�N
� lsf

N� / ��F
� lsf

F +�N
� lsf

N�. Here, �m
F and Jm

F

apply to the ferromagnetic layer occupying z�0, whereas
�m

N and Jm
N refer to the nonmagnetic layer �z�0�. In deriving

the initial conditions above, we have used the identity
1 / �2�N�F�

� �=�N�F� /2=e2NsD̄N�F�, where �N�F� is the total con-
ductivity of the nonmagnetic �ferromagnetic� layer. The
boundary condition for �m�z , t� is �m�z= �� , t�=0. Then,
the boundary condition for Jm�z , t� can again be derived from
Eq. �11�. This yields

Jm�z = � �,t� = �̃J0�1 − 2 exp�− t/��� , �A24�

where �̃ is the asymmetry parameter before the magnetiza-
tion switching. Note that �̃ becomes −�̃ when the magneti-
zation is switched �t�0�.
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